Product catalogue # **Technique from HILO-TEST** More than 40 years' experience Your advantage in competition Impulses for your development # We develop and produce Generators and test equipment according to IEC, VDE, ISO, IEEE, DIN # Our equipment is user friendly reliable, durable stand-alone programmable with light guide computer controllable > HILO-TEST Am Hasenbiel 42 D-76297 Stutensee/ Karlsruhe +49 7244 20 500-0 +49 7244 20 500-39 info@hilo-test.de www.hilo-test.de **Made in Germany** # **PRODUCT OVERVIEW** | 1. | GE | NERAL CONTROL DISCRIPTION | 1 | |----|------|---|------| | | 1.1 | Control unit | 1 | | | 1.2 | PC Software: HILO Remote Control | 2 | | 2. | EM | C TEST EQUIPMENT | 3 | | : | 2.1 | AUTOMOTIVE EMC EQUIPMENT | 3 | | | 2.1. | 1 CAR TEST SYSTEM | 3 | | | 2.1. | 2 CAR ACCESSORIES | 5 | | : | 2.2 | INDUSTRIAL EMC EQUIPMENT | 6 | | | 2.2. | 1 Multi-CE | 6 | | | 2.2. | 2 Multi-CE optional extensions | 6 | | | 2.2. | 3 Multi-CE sub-units | 7 | | | 2.2. | 4 Multi-CE Accessories | 8 | | | 2.2. | 5 Combination Wave Generators | 9 | | | 2.2. | 6 Coupling- / Decoupling Networks for CWG | 9 | | | 2.2. | 7 Oscillatory Wave (Ring Wave) Generators | . 10 | | : | 2.3 | TELECOM TEST EQUIPMENT | . 11 | | | 2.3. | 1 High-Voltage Test Generator | . 11 | | | 2.3. | 2 Special Generators | . 12 | | 3. | CO | MPONENT TEST GENERATORS | 13 | | ; | 3.1 | HIGH VOLTAGE PULSE GENERATORS | .13 | | ; | 3.2 | HIGH CURRENT PULSE GENERATORS | . 14 | | 4. | HIG | H-VOLTAGE TEST AND MEASUREMENT EQUIPMENT | 16 | | | 4.1 | AC- / DC TEST EQUIPMENT | . 16 | | | 4.2 | SAVETY TEST COVERS | . 17 | | | 4.3 | CALIBRATION EQUIPMENT | . 18 | | | 4.4 | HIGH-VOLTAGE MEASUREMENT EQUIPMENT | . 18 | | | 4.5 | HIGH-VOLTAGE DIVIDERS | . 19 | | | 4.6 | CURRENT VIEWING RESISTORS | . 20 | | | 4 7 | MISCELLANOS | 20 | # GENERAL CONTROL DISCRIPTION #### 1.1 Control unit The HILO-TEST Control unit is the centre of each generator, over which the user interacts with the device. At multi-testers, like the 'Multi-CE5', a user can choose a subunit and change per 1-clickmethode all testing parameters. As well, he can create and edit own test procedures, or choose one of predefined standard test sequences. While testing he gets live visualized the state of testing as well as the D.U.T. monitoring. Furthermore are changes in the parameters possible, while the test is running. The documented results, which include test parameters and results as well as in the set-up menu defined information, can be stored on an USB stick. 'Autotest' allows running predefined or own sequences of different subunits after each other, while leaving the D.U.T. at one output. #### **Highlights:** - 5"/ 7" touch screen display unit - Intuitive control and pictures help to explain parameters as well as test setups - One-click change of test parameters - Manual operation or creation of own test procedures - Select out of predefined standard procedures - Status and D.U.T. monitoring - Printout of test documentation to an USB stick - Additional: Remote PC control via optically isolated Ethernet interface with Impulse Recording Function (IRF) Figure 1: Main menu of Multi-CE5 Current Test Setup Next Pulse 4 s No.of Pulses 1/2 Control 2000 V U-Peak 2000 V 10 Triggerdelay 0 HV-OUT none Figure 2: 1-click Parameter changes Figure 3: Autotest Figure 4: Impulse Test Manual Test Polarity Repetition Coupling Impedance Figure 5: Live variation of parameters Figure 6: Test results # 1.2 PC Software: HILO Remote Control Hilo Remote Control is an optional software program for personal computers and permits to control HILO-Test generators from your computer. The software allows users to create and edit tests as well as to choose from predefined standard procedures. The remote also supports auto testing. Furthermore, it also allows the standardized documentation according to IEC 17025 and the evaluation of test results, which can be changed with your default text editor. It is equipped with an Impulse Recording Function (IRF). In cooperation with an oscilloscope, it allows to monitor all test pulse and to store the captured image of the waveforms at computer, which can be added in reports. The communication with the generator is implemented with a LAN connection. The generator is connected via an optical interface. Thus, the PC is completely disconnected from the generator. - LAN connection via an optical interface - Intuitive control and change of test parameters - Manageable test equipment library - Status and D.U.T. monitoring - Definition of multiple fail/ aboard conditions for evaluation or automated stop of the test - Impulse Recording Function (IRF), to record all or definite waveform with an oscilloscope - Different oscilloscope predefined and selectable - Standardized documentation according to IEC 17025 Figure 7: HILO-Remote Main window Figure 8: HILO-Remote -testing Figure 9: Oscilloscope picture feedback of IRF Figure 10: CAR Standards available Figure 11: Custom Waveform shapes with CAR-AWG # 2. EMC TEST EQUIPMENT # 2.1 AUTOMOTIVE EMC EQUIPMENT The specific EMC requirements in automotive tests take continuously, so that the test waveforms are becoming increasingly complex. As a manufacturer of EMC test simulators and due to the participation in international standardization bodies, HILO-TEST knows exactly the current and future requirements of the automotive industry. The following automotive products are especially geared to the EMC requirements in modern automobile and according to current standards: ### 2.1.1 CAR TEST SYSTEM The CAR TEST SYSTEM includes a set of pulse generators which supply different test pulses. #### **CAR TEST SYSTEM 14** | According to | |--------------------------------| | ISO 7637-2: 2011 | | ISO 16750-2: 2012 | | LV 124, LV 148 | | various manufacturer standards | # **Highlights:** - Suitable for 12V, 24V, 42V systems up to 70V - Different battery currents 50/100/200 A - Electronic sense for battery voltage - Front ground connections - For 19" rack, build in - Modular and extendable Figure 12: CAR TEST SYSTEM with option PS 66-55 to extend by Pulse 2b and Pulse 4. # **Standard System** | Included Pulse | Waveform | Voltage | Standard | Ri | |----------------|------------|---------|-----------|---------------------------------| | Pulse 1 | 1-5/2000µs | 600 V | ISO | | | | 1-5/1000µs | 600 V | ISO / SAE | | | Pulse 2a | 1 / 50µs | 600 V | ISO | $2/4/10/20/30/50/90/150 \Omega$ | | Pulse 3 | 5/100 ns | 800 V | ISO | 50 Ω | # Systems with HILO-TEST power amplifiers: | Variations | Power amplifier | Continuous current | |----------------------------|-----------------|--------------------| | CAR-TEST-SYSTEM SYS 14 I | PS 66-55 | 50 A | | CAR-1E31-3131EW 313 141 | CAR-AWG 1200 | 40 A | | CAR-TEST-SYSTEM SYS 14 II | PS 66-110 | 100 A | | CAR-1231-3131EW 313 14 II | CAR-AWG 3000 | 100 A | | CAR-TEST-SYSTEM SYS 14 III | PS 74-220 | 200 A | | CAR-1E31-3131EW 313 14 III | CAR-AWG 6000 | 200 A | Configurations for the fulfillment of various standards: | Setup | CAR-SYS +
Battery | CAR-SYS +
PS xx-xx | CAR-SYS +
CAR-AWG | CAR-AWG | |------------------------|----------------------|------------------------|----------------------|----------| | ISO 7637 ²⁾ | √ 5) | √ | √ | Х | | ISO 16750 1) | Х | √ ⁴⁾ | √ | √ | | ISO 21848 | Х | ✓ | ✓ | √ | | LV 124/148 3) | Х | Х | ✓ | √ | | MBN 1028-4 | √ | √ | √ | Х | | Renault 36.00.808 1) | Х | Х | ✓ | Х | | SAEJ 1113-111 1) | Х | Х | ✓ | Х | | VW TL81000 1) | √ | √ | √ | Х | ^{1) +} Load dump (PG2804 / PS-LD) Comparison of the amplifier extensions: | Туре | PS xx-xx | CAR-AWG | | |------------------------------|--|---------------------------------|--| | Description | Power supply controllable over
Ethernet | Arbitrary Waveform
Generator | | | Version | 66-55 66-110 74-220 | 1200 3000 6000 | | | Max. Voltage | 74V | 75V | | | Max. Current | 50A 100A 200A | 40A 100A 200A | | | Slew Rate | 10V/µs | 80V/µs | | | Bandwidth | - | DC-1MHz | | | Controllable battery voltage | ✓ | ✓ | | | Reversible polarity | X | ✓ | | | Custom waveforms | X | √ | | # **Load Dump** Extension of the CAR-SYS 14 by the Pulse #5 (Test A and B) "Load Dump". # According to ISO 16750-2: 2012 ## **Highlights:** - Suitable for 12V, 24V systems until 202V - Source resistance, switchable - Waveform, changeable Figure 13: PG2804 and PS-LD **Comparison of the Load Dump extensions:** | ompanion of the Louis Samp extensions. | | | | | | | |--|--------------------|----------------------|--|--|--|--| | Туре | PG 2804 | PS-LD | | | | | | Loading voltage | 202V | 202V | | | | | | Version | analogues | digital | | | | | | Clamping for Test B | 22V step width | variable | | | | | | Rise time | 10ms | 2-20ms (variable) | | | | | | Fall time | 50-400ms (5 steps) | 40-1000ms (variable) | | | | | ^{2) +} CAR-TE 14 for 4.3. Transient Emission test ^{3) +} CAR-PFS 80 for LV E-10, E-13 and E-14 Interruptions tests ⁴⁾ without Superimposed alternating voltage test ⁵⁾ without Puls 2b #### **CAR SWITCH TE 14** The CAR-Transient Emission 14 is used to check the transient transition behaviour when switching loads on the vehicle electrical system. #### **According to** ISO 7637-2: 2011 ### **Highlights:** - Suitable for 12V, 24V and 42V systems until 70V - For different currents 50/100/200 A - Electronical and mechanical switch - Voltage drop < 2V - All distances as in the standard - Ground plate for ground connection Figure 14: CAR SWITCH TE 14 #### CAR-PFS 80 The CAR-PFS-80 is an automotive interruptions simulator, which is designed for performing fast voltage dips and drops (micro-interruptions) according to standard requirements, mainly from vehicle manufacturers. # According to ISO 16750-2: 2012 LV 124 # **Highlights:** - Interruptions for data and supply lines - Predefined sequences, adjustable - Rise-/ fall times < 1µs - Battery voltage: 80V DC - Battery current: 50A, 100A - Option: Additional relay switches Figure 15: CAR SWITCH TE 14 #### 2.1.2 CAR ACCESSORIES | Accessories | Description | | | | |-------------|---|--|--|--| | CDN 2012 | Capacitive Coupling Clamp | | | | | | Capacitive coupling of BURST pulses to screened cables | | | | | CAR ICC | Inductive coupling clamp | | | | | | The CAR-ICC is used for diagnostic bulk current testing (BCI) up to 1 GHz | | | | | SESD 30000 | Electro Static Discharge Generator | | | | | | Contact and air discharge till 30 kV, to IEC 61000-4-2 and ISO/TR 10605 | | | | # 2.2 INDUSTRIAL EMC EQUIPMENT The EMC Test Equipment is designed for testing electromagnetic immunity of the electrical and electronic equipment for industrial applications. ### 2.2.1 Multi-CE This compact EMC test unit is designed for testing electromagnetic immunity against pulsed and conducted interference. | According to | | |---------------------|--------------------------------| | IEC 61000-4-4 | BURST | | IEC 61000-4-5 | SURGE | | IEC 61000-4-8 | Power frequency magnetic field | | IEC 61000-4-9 | Pulsed magnetic field 8/20µs | | IEC 61000-4-11 / 29 | Voltage dips and variation | ### **Highlights:** - 7" touch screen display unit - Compact Multi Generator - Including Burst, Surge and Power Fail Simulator - Version for 5kV and 7kV - Including 1-Phased de-/coupling network (ISO and ANSI) - D.U.T. and EFTG outputs on front - Many accessories # **Comparison of the Multi-CE systems:** | Туре | | Multi-CE5 | Multi-CE7 | |-----------------------|-------------------|-----------|---------------| | Maximum voltage Surge | | 5kV | 7kV | | Maximum voltage I | Burst | 5kV | 5kV | | coupling network r | modo | ISO | ISO + | | coupling network i | iiou e | 130 | optional ANSI | | Mains sync. trigger | ring | ✓ | ✓ | | Integratable genera | ators: | | | | Burst | 5/50ns | ✓ | ✓ | | Surge | 1.2/50µs | ✓ | ✓ | | Power Fail | | ✓ | √ | | Ringwave | 100kHz | X | ✓ | | Telecom Surge | 10/700µs | Х | √ | Figure 16: Multi-CE5 Figure 17: Multi-CE7 # 2.2.2 Multi-CE optional extensions The Multi-CE is in its both basic configurations (5kV, 7kV) expandable as follows: Basic device: Multi-CE5 with Burst- and Surge generator, as well as 1-phased coupling network (ISO): | Expandable to | Description | Norm | |---------------|--|----------------| | PFS-CE 16 | Power Fail Generator | IEC 61000-4-11 | | | Simulates transient interruptions of the power supply voltage With accessories VPS250-16: Also variations of the power | | | | supply voltage. | | Basic device: Multi-CE7 with Burst- and Surge generator, as well as 1-ph. coupling network (ANSI): | Expandable to | Description | Norm | |---------------|---|----------------| | PFS-CE 16 | Power Fail Generator Simulates transient interruptions of the power supply voltage With accessories VPS250-16: Also variations of the power supply voltage. | IEC 61000-4-11 | | RW-CE | Ringwave Generator Simulates high-voltage transients of the mains power supply with the waveform of a damped oscillatory wave. Waveform 0.5µs/100 kHz, 0 - 7 kV | IEC 61000-4-12 | | TS-CE | Telekom Surge Generator Simulates high-voltage transients with the waveform 10/700μs, 0 - 7 kV | IEC 61000-4-5 | # 2.2.3 Multi-CE sub-units All sub units are available as a stand-alone version. They benefit from all advantages the modular system around the Multi-CE offers. Following upgradable stand-alone test generators are available: | Sub-units | Description | Standard | |-----------|--|----------------| | EFTG-CE5 | Electrical Fast Transient Generator | IEC 61000-4-4 | | | Simulates transient disturbances of the mains power supply | | | | caused by contact bouncing. | | | | Waveform 5/50 ns, 0.2 - 5 kV, 1 KHz-1 MHz burst frequency | | | CWG-CE5 | Combination Wave Generator | IEC 61000-4-5 | | | Simulates transient disturbances of the mains power supply | | | | caused by switching in the major power system and/or secondary | | | | effects of lightning strokes. | | | | Waveform 1.2 / 50 μs, 0.2- 5 kV and 8 / 20 μs, 0.1- 2.5 kA. | | | PFS-CE-16 | Power Fail Simulator | IEC 61000-4-11 | | | Including motor driven variac 0 - 250 V, simulates transient | | | | interruptions and variation the power supply voltage. | | | CWG-CE7 | Combination Wave Generator | IEC 61000-4-5 | | | Simulates transient disturbances of the mains power supply | | | | caused by switching in the major power system and/or secondary | | | | effects of lightning strokes. | | | | Waveform 1.2 / 50 μs, 0.2- 7 kV and 8 / 20 μs, 0.1- 3.5 kA. | | | RW-CE7 | Ringwave generator | IEC 61000-4-12 | | | Simulates high-voltage transients of the mains power supply with | | | | the waveform of a damped oscillatory wave, mains synchronous | | | | triggering | | | | Waveform 0.5μs/100 kHz, 0 - 7 kV | | | TS-CE7 | Telekom Surge Generator | IEC 61000-4-5 | | | Simulates high-voltage transients with the waveform 10/700µs, 0 - 7 kV | | # 2.2.4 Multi-CE Accessories | Accessories | Description | |----------------|--| | VPS 250-16 | Variable Power Source | | | Motor driven variac, control by Multi-CE5, generation of voltage variation according to IEC 61000-4-11 | | HI200-CE | Helmholtz Coil | | | Air coil for generation of magnetic fields according to IEC 61000-4-8 / -9 | | EFTC 2012 | Capacitive Coupling Clamp | | | For capacitive coupling of BURST pulses to screened cables according to IEC | | | 61000-4-4 | | SCK 105 in Box | Surge Calibration Kit in Box | | | Including impulse voltage divider and current viewing resistor | | | For calibration of surge generators | | BCK 400F | Burst Calibration Kit | | | Including impulse voltage divider 200:1 and 400:1, input impedance 50Ω | | | For calibration of burst generators | | SESD 216 | Electric Static Discharge Generator | | | Contact discharge up to 10 kV, air discharge up to 16, 5 kV | | | As specified IEC 61000-4-2 | **Figure 19: EFTC 2012** Figure 18: Multi-CE5 + CDN combination # **Compatible Coupling-/ Decoupling Networks** For SURGE and/or BURST pulses Coupling display on the front panel Control by Mulit-CE5. | Variations | Burst/Surge coupling to | Supply voltage | Maximal test voltage | |------------|-------------------------|----------------|----------------------| | CDN 5416 | power supply lines | 3 * 400V, 16A | 5kV, 1.2/50µs | | CDN 5432 | power supply lines | 3 * 400V, 32A | 5kV, 1.2/50µs | | CDN 5463 | power supply lines | 3 * 400V, 63A | 5kV, 1.2/50µs | | CDN 7416 | power supply lines | 3 * 400V, 16A | 7kV, 1.2/50µs | | CDN 7432 | power supply lines | 3 * 400V, 32A | 7kV, 1.2/50µs | | CDN 7463 | power supply lines | 3 * 400V, 63A | 7kV, 1.2/50µs | | CDN 2402 | 4 data lines | 4 * 48V, 2A | 2,5 kV, 1.2/50µs | | CDN 2410 | 4 data lines | 4 * 240V, 10A | 2,5 kV, 1.2/50µs | | CDN 2802 | 8 data lines | 8 * 48V, 2A | 2,5 kV, 1.2/50µs | #### 2.2.5 Combination Wave Generators Surge pulses occur due to direct or indirect lightning strikes in a circuit or by switching transients caused by switching inductive loads or short circuits. This leads to currents or electromagnetic fields cause high voltage or current transients. Surge voltages and currents can reach several thousands of volts and thousands of amperes. Our following Surge generators simulate these disturbances for all the necessary level: | According to | | |---------------|--| | IEC 61000-4-5 | | | IEC 60060 | | # **Highlights:** - Standardised voltage and current waveforms Voltage: 1,2/50 μs; Current: 8/20 μs - Up to 24 kV and 12 kA - 1- or 3-phase and data line CDNs available Figure 20: Combination wave generator | Variations | CWG Pulse voltage 1.2/50µs | CWG Pulse current 8/20µs | |------------|----------------------------|--------------------------| | CWG-CE7 | 7 kV | 3.5 kA | | PG 10-504 | 10 kV | 5.0 kA | | PG 12-804 | 12 kV | 6.0 kA | | PG 24-2500 | 24 kV | 12 kA | # 2.2.6 Coupling- / Decoupling Networks for CWG Allow superposition of the disturbances to the mains voltage or to signal lines of the device under test. | As specified in | | |-----------------|--| | IEC 61000-4-5 | | | IEC 60060 | | Coupling networks for power supply lines 3*400V: | | | Current of power supply lines up to | | | | | |------------------------------------|------|-------------------------------------|----------|----------|-----------|-----------| | | | 16A | 32A | 63A | 125A | 200A | | Marrian | 5kV | CDN 5416 | CDN 5432 | CDN 5463 | CDN 54125 | CDN 54200 | | Maximum
Testvoltage
1,2/50µs | 7kV | CDN 7416 | CDN 7432 | CDN 5463 | CDN 54125 | CDN 54200 | | | 10kV | CDN 10416 | CDN 5432 | CDN 5463 | CDN 54125 | CDN 54200 | | | 12kV | CDN 12416 | CDN 5432 | CDN 5463 | CDN 54125 | CDN 54200 | **Further Coupling networks:** | Variations | Burst/Surge coupling to | Supply voltage | Maximal test voltage | |------------|-------------------------|-----------------|----------------------| | CDN 10216 | power supply lines | 1 * 240 V, 16 A | 10 kV, 1.2/50μs | | CDN 12216* | power supply lines | 1 * 240 V, 16 A | 12 kV, 1.2/50μs | | CDN 2402 | 4 data lines | 4 * 48 V, 2 A | 2,5 kV, 1.2/50µs | | CDN 2410 | 4 data lines | 4 * 240 V, 10 A | 2,5 kV, 1.2/50µs | | CDN 2802 | 8 data lines | 4 * 48 V, 2 A | 2,5 kV, 1.2/50µs | ^{*} special for usage of differential mode and common mode # 2.2.7 Oscillatory Wave (Ring Wave) Generators | According to | Generator | Description | |----------------|-----------|--| | IEC 61000-4-10 | RW-CE7 | Ringwave generator | | IEC 1008-1 | | RCCB's testing | | IEC 61000-4-12 | IPG 2553 | High-frequency magnetic field test generator | | IEC 61000-4-18 | IPG 2554 | Oscillatory wave generator | - Versatile and upgradable - Different configurations possible - External data line CDN available - Internal 3-phased coupling/decoupling network (IPG2554) - Common and differential mode Figure 21: IPG2554 | Variations | Description | |------------|---| | RW-CE7 | Ringwave generator Simulates high-voltage transients of the mains power supply caused by switching in | | | the major power system, mains synchronous triggering | | | Waveform 0.5µs/100 kHz, 0 - 7 kV | | | Specified in IEC 61000-4-12 | | | Option: Coupling-/decoupling network for power supply lines Option: Modification for testing RCCB's according to IEC 1008-1 | | IPG 2553 | High-frequency magnetic field test generator | | | Simulates high-frequency magnetic fields caused by switching in gas | | | Isolated substations of the power system | | | Specified in IEC 61000-4-10 | | | Including Helmholtz-Coil, 1*1 m | | | Damped magnetic field 100 kHz, 10/30/100 A/m, repetition rate 40 Hz | | 100 0554 | Damped magnetic field 1.0 MHz, 10/30/100 A/m, repetition rate 400 Hz | | IPG 2554 | Oscillatory wave generator | | | Simulates high-voltage transients of the mains power supply caused by switching in gas isolated substations of the power system | | | Specified in IEC 61000-4-18 | | | Slow damped oscillatory wave: | | | 100 kHz, 0.25 - 3 kV, repetition rate 400 Hz | | | 1.0 MHz, 0.25 - 3 kV, repetition rate 400 Hz | | | Fast damped oscillatory wave: | | | 3 / 10 / 30 / MHz, 0.25 - 4 kV, repetition rate 5000 Hz | | | The IPG is to obtain in the following different configurations: | | | IPG 2554 (fast, slow) | | | IPG 2554 fast | | I | IPG 2554 slow | # 2.3 TELECOM TEST EQUIPMENT # 2.3.1 High-Voltage Test Generator Telecommunication networks are exposed to particularly natural disasters such as lightning and its effects. Therefore all connected telecommunications systems require reliable protection. Our subsequent Surge Simulators are specifically designed for EMC testing of telecommunications systems in accordance with ITU-T: # Devices, specified in ITU-T K12, K17 # **Highlights:** - Multiple variations - Different output impedances - Different safety test cover mounted on the top of the equipment - I*t Limit monitoring and evaluation Figure 22: IPG1050 ## High-voltage pulse generator | Variations | Pulse type | Waveform | Voltage | Energy | |------------|-----------------|-----------|---------|--------| | IPG 620 | Lightning surge | 1.2/50 µs | 6 kV | 20 J | | IPG 1050 | Lightning surge | 1.2/50 µs | 10 kV | 50 J | | IPG 1272 | Lightning surge | 1.2/50 µs | 12 kV | 72 J | ### **Generators with multiple Waveforms:** # Devices, specified in ITU-T K12, K17, K20 | Variations | Pulse type | Waveform | Voltage | Energy | | |--------------|-----------------|------------|---------|--------|--| | PG 5-200-1/2 | Lightning surge | 1.2/50 µs | 5 kV | 10 J | | | | Switching surge | 10/700 μs | 5 kV | 200 J | | | PG 6-364 | Lightning surge | 1.2/50 µs | 6 kV | 20 J | | | | Switching surge | 10/700 μs | 6 kV | 360 J | | | | Option: | 100/700 μs | | | | | | | 0.5/700 µs | | | | | | | 1/1000 µs | | | | | PG 10-1000 | Lightning surge | 1.2/50 μs | 10 kV | 50 J | | | | Switching surge | 10/700 μs | 10 kV | 1000 J | | | PG 12-1400 | Lightning surge | 1.2/50 μs | 12 kV | 70 J | | | | Switching surge | 10/700 μs | 12 kV | 1400 J | | | PG 14-1960 | Switching surge | 10/700 μs | 14 kV | 1960 J | | | | Switching surge | 0.5/700 μs | 14 kV | 1960 J | | | PG 20-4000 | Switching surge | 10/700 μs | 20 kV | 4000 J | | # 2.3.2 Special Generators | According to | | |------------------------|--| | ITU-T K12, K17, K20 | | | ITU-T 12 TR 1 | | | GR-1089-CORE | | | FCC Part 68, TIA - 968 | | | Variations | Description | |-------------|--| | IPG 255 | Insulation test with impulse voltage according to IEC 255 | | | Impulse voltage: 0.8/1.0/1.5/2.5/4.0/5.0/6.0/8.0 kV, | | | We = 0.5 J, Rs = 500 Ohm | | IPG 506 | Front chopped wave generator | | | Designed for measurement of dc spark-over voltage and | | | Impulse spark-over voltage | | | 5 kV impulse, dU/dt = 100V/μs - 5000 V/μs | | | Insulation resistance 0,5 -5 G Ω | | IDO FOC OVA | According to ITU-T, K12 | | IPG 506-SYM | Symmetric Front chopped wave generator | | | Test system for two stage SPDs | | | 2 x Impulse spark-over voltage 2 x 5 kV impulse, dU/dt = 100V/µs - 5000 V/µs | | | Insulation resistance 0,5 -5 G Ω | | PIG 1500 | Power induction generator | | FIG 1500 | Designed for testing telecommunication ports | | | Open circuit output voltage 30 - 1500 V | | | Series resistor 200 Ω / 600 Ω | | | Coupling impedance, optional $100\Omega + 0$, $5\mu F + 1.0\mu F$ | | | According to ITU-T K20 | | PG 6-432 | Impulse life test generator | | 1 0 0 102 | Life time test of SPDs | | | Switching Surge 10/700 μs, 2*100 A, 430 J | | | Switching Surge 10/1000 µs, 2*100 Å, 430 J | | | According to ITU-T 12 TR 1, K17, K20 | | PG 6-500 | Surge current generator, 2/4* 5 kV, or 100/500 A, 2/10 µs | | | Designed for testing 2-wire or 4-wire telecom ports | | | First-Level Lightning Surge ± 2500 V, 500 A, 2/10 µs | | | Second-Level Lightning Surge ± 5000 V, 500 A, 2/10 µs | | | Intra-Building Lightning Surge ± 800 V, 100 A, 2/10 µs | | | Intra-Building Lightning Surge ± 1500 V, 100 A, 2/10 µs | | | According to Fig. 4.2 of GR-1089-CORE standard FCC Part 68, TIA - 968 | | PG 2-750 | Surge current generator | | | 1.6kV, 10/160µs, 4*100A or 800V, 10/560µs, 2*100A | | | Optional 1kV, 10/1000µs, 2*100A according to GR-1089-CORE | | DO 4 044 | According to FCC Part 68, TIA – 968 | | PG 4-641 | Surge current generator | | | 3.6kV, 10/160µs, 480A | | | According to FCC Part 68, TIA – 968 | # 3. COMPONENT TEST GENERATORS Designed for testing passive and active components and devices: - Meets testing recommendation of many product standards - Surge voltage test of transformers, optical couplers and electrical installations - Surge voltage test of over-voltage protection devices and circuits - Dielectric testing of X/Y-capacitors - Spark over detection on the test sample with adjustable current sensor # 3.1 HIGH VOLTAGE PULSE GENERATORS Designed for dielectric testing, lightning surge 1.2/50 µs | Variations | Pulse type | Waveform | Voltage | Energy | |------------|-----------------|-----------|---------|--------| | IPG 605 | Lightning surge | 1.2/50 µs | 6 kV | 5 J | | IPG 620 | Lightning surge | 1.2/50 µs | 6 kV | 20 J | | IPG 1012 | Lightning surge | 1.2/50 µs | 10 kV | 12 J | | IPG 1050 | Lightning surge | 1.2/50 µs | 10 kV | 50 J | | IPG 1218 | Lightning surge | 1.2/50 µs | 12 kV | 18 J | | IPG 1272 | Lightning surge | 1.2/50 µs | 12 kV | 72 J | | IPG 2025 | Lightning surge | 1.2/50 µs | 20 kV | 25 J | | IPG 2436 | Lightning surge | 1.2/50 µs | 24 kV | 36 J | Figure 24: IPG 605-2436 with output on the rear panel Figure 23: IPG 605-2436 with safety test cover Measurement of Insulation resistance According to IEC 60065 | Variations | Surge impulse voltage | Measurement voltage | Isolation resistor | |------------|-----------------------|---------------------|--------------------| | IPG 1201 | 12 kV | 500V | 0.5 - 20 MΩ | Designed for dielectric testing of X/Y-capacitors and power line filters | Variations | Waveform | Voltage | Energy | Capacitor range | |------------|-----------|------------|--------|---------------------------------| | IPG 809 | 1.7/46 µs | 0.1 - 8 kV | 9 J | 0.1- 27 nF | | PG 6-401 | 1.6/47 µs | 0.1 - 6 kV | 400 J | 33/47/68/100/150/220/330/470 nF | Designed for photovoltaic module testing | Variations | Waveform | Voltage | Energy | Capacitance | |------------|-----------|---------|--------|--------------| | PG 10-200 | 1.2/50 µs | 10 kV | 200 J | 10 nF-183 nF | | PG 12-360 | 1.2/50 µs | 12 kV | 360 J | 10 nF-183 nF | | PG 20-100 | 1.2/50 µs | 20 kV | 100 J | 27 nF-183 nF | # 3.2 HIGH CURRENT PULSE GENERATORS HILO-TEST manufactures power generators for surge current material and safety tests, in particular for the examination of diverting elements such as gas discharge tubes, varistors, SPDs, and components in which such protective elements are installed. # **According to** IEC / EN 61643-11 # **Highlights:** - · Compact tester as table usage - Cabinet tester optional with testing room - Safety test cover mounted on the top of the equipment - Plug in for different wave shapes Figure 26: PG 6-200/400 Figure 25: EMC 2015 # Compact tester: | Variations | Туре | Pulse current | Waveform | Energy | |------------|--------------------------|---------------|-------------|--------| | PG 6-250 | Varistor tester | 10A - 2.5 kA | 8/20µs | 250 J | | PG 6-200 | Surge Current Generator | 5 kA | 8/20µs | 200 J | | PG 6-400 | Surge Current Generator | 10 kA | 8/20µs | 400 J | | EMC 2015 | Pulse Generator System | | | | | | Current standard plug-in | 25 kA | 8 / 20 µs | 1500 J | | | Current plug-in | 5 kA | 10 / 50 μs | 1500 J | | | Current plug-in | 600 A | 10 / 350 μs | 1500 J | | | Current plug-in | 300 A | 10 / 700 μs | 1500 J | | | Current plug-in | 200 A | 10/1000 µs | 1500 J | | | Combination wave plug-in | 2 * 10 kV | 1.2 / 50 µs | 1500 J | | | | 2 * 10 kA | 8 / 20 µs | 1500 J | | | Varistor test plug-in | 3 kA | 8 / 20 µs | 250 J | | | Voltage plug-in | 10kV | 10/700 µs | | # Cabinet tester: | Variations | Pulse current | Waveform | Energy | |-------------|---------------|------------|---------| | PG 6-2402 | 2*(1-25) kA | 8/20 µs | 2400 J | | PG 10-10000 | 2*(1-50) kA | 8/20 µs | 10000 J | | PG 20-7000 | 50 kA | 8/20 µs | 7000 J | | PG 20-10000 | 70 kA | 8/20 µs | 10000 J | | PG 20-14000 | 100 kA | 8/20 µs | 14000 J | | PG 10-2500 | 500 A | 10/700 μs | 2500 J | | PG 20-4000 | 500 A | 10/700 μs | 4000 J | | PG 10-4000 | 500 A | 10/1000 μs | 4000 J | | PG 10-8000 | 1.0 kA | 10/1000 μs | 8000J | | PG 10-6000 | 10 kA | 10/50 μs | 6000 J | | PG 10-7000 | 2.5 kA | 10/350 μs | 7000 J | | PG 10-12500 | 5 kA | 10/350 μs | 12500 J | | PG 10-25000 | 10 kA | 10/350 µs | 25000 J | Figure 27: PG 10-10000 Figure 28: PG 20-14000 # 4. HIGH-VOLTAGE TEST AND MEASUREMENT EQUIPMENT HILO-TEST produce several devises and components, the range of these products includes: - High-voltage test of isolations with ac- dc or impulse voltage - Measuring equipment for ac-, dc- or impulse voltage - High-voltage dividers for ac-, dc- or impulse voltage (HVT: Page 19)) - Current viewing resistors for ac-, dc- or impulse current # 4.1 AC-/DC TEST EQUIPMENT AC test set-up - Designed for AC isolation test # **Highlights:** - Massive safety test cover mounted on the top or security glass front door with safety switch - Ground rod inside the safety test cover - Burn and Turn-off modus - Current limitation and shutdown - Step function Figure 30: AC Tester Figure 29: HVTS as 19" cabinet with test room | Variations | Description | Voltage | Current | |-------------|------------------------------------|---------|---------| | AC-TESTER 6 | _ | 10 kV | 100 mA | | HVTS 30-20 | Toot made burning and over ourrent | 30 kV | 20 mA | | HVTS 30-40 | Test mode burning and over current | 30 kV | 40 mA | | HVTS 50-10 | _ | 50 kV | 10 mA | High voltage DC Tests - Compact DC high voltage test device, developed for DC isolations tests - Adjustable rise time - Test time adjustable - Current limit adjustable - Error message when over current | Variations | Voltage | Current | |------------|---------|---------| | HTS 20-5 | 20 kV | 5 mA | | HTS 20-10 | 20 kV | 10 mA | Figure 31: HTS 20-10 # 4.2 SAVETY TEST COVERS # **Highlights:** - For High-voltage testing of components - Prevents accidental contact with live parts of test objects - With ground rod - Security door switch with Interlock - Different test sample connections - Red / green lights Figure 32: PA 504 Optionally build in with impulse voltage divider and current shunt # 4.3 CALIBRATION EQUIPMENT # **Highlights:** - Pulse generator - Measuring the step response - Different operational modes | Variations | Usage | Impulse rise time | |------------|---|-------------------| | IPG 250 | Impulse generators for calibration purposes/
step response measurement | < 3 ns | #### **Calibration Kits** | Variations | Usage | |------------|-----------------------| | SCK 105 | Surge Calibration Kit | | BCK 400F | Burst Calibration Kit | # 4.4 HIGH-VOLTAGE MEASUREMENT EQUIPMENT All HILO-TEST voltage divider HVT – RCR are included in the HVM2015 firmware. The user connects the voltage divider, set it in the device menu and can start with the measurements immediately. - High voltage measurement equipment - Measuring up to 10 kV - Optional up to 20 KV - With ext. HVT: up to 300 kV - Firmware set up for all Hilo-Test dividers implemented - Remote Ethernet interface with fibre optic | Variations | Usage | Extern input | Direct input | |------------|--|--------------|------------------------| | HVM 2015 | Measurement device for high ac, dc and pulse voltage | 0 - 100 V | 10KV
Optional: 20kV | Figure 33: HVM 2015 # 4.5 HIGH-VOLTAGE DIVIDERS The High voltage divider types HVT - RCR possess from DC up to their cut-off frequencies in the MHz range uniformly excellent transmission characteristics. The voltage divider consists of a resistive branch, which is constructed of high-grade resistance, and a capacitive branch with series damping. - Broadband high voltage divider for AC, DC and impulse voltage - Very good accuracy, high bandwidth, low rise time - Manual operation or creation of test procedures with HVM2015 | Variations | Description | |------------|----------------------------| | PVD *** | Impulse voltage divider | | HVT***RCR | Wide band voltage dividers | Figure 34: HVT 240/300 RCR Figure 35: HVT 80/120/160 RCR Figure 36: HVT 40 RCR Figure 37: HVT 2.5/10/20 RCR | HVT variations | 10 | 20 | 40 | 80 | 120 | 160 | 240 | 300 | |-----------------------|--------|--------|--------|--------|--------|--------|--------|--------| | DC voltage | 11 kV | 22 kV | 40 kV | 80 kV | 120 kV | 160 kV | 240 kV | 300 kV | | AC voltage eff. | 8 kV | 15 kV | 30 kV | 60 kV | 90 kV | 120 kV | 180 kV | 230 kV | | Pulse voltage | 20 kV | 40 kV | 100 kV | 160 kV | 200 kV | 250 kV | 360 kV | 480 kV | | Divider ratio | 1000:1 | 2000:1 | 2500:1 | 5000:1 | 5000:1 | 5000:1 | 5000:1 | 5000:1 | # 4.6 CURRENT VIEWING RESISTORS | Variations | Usage | |---------------|---| | Series ISM*** | Current measuring resistors for high pulse currents | | Series WSM*** | Current measuring resistors for high ac currents | Figure 38: WSM/ ISM # 4.7 MISCELLANOS **HCC**: High voltage Capacitor Charging unit | HCC variations | | | | | | | | |-----------------|-----|-----|----|----|----|----|----| | Max Voltage/ kV | 4 | 10 | 20 | 30 | 40 | 50 | 60 | | Max Current/ mA | 400 | 120 | 60 | 40 | 30 | 24 | 20 | | Miscellaneous | Description | |---------------|---| | IT 5413 | Trigger transformer for spark gaps | | IT 5425 | Trigger transformer for spark gaps | | USD 3801 | Ultrasonic detector for partial discharge | | USD 3802 | Ultrasonic detector for partial discharge | | TEM 2000 | TEM-test cell | Figure 39: HCC 30-40 | Notes: | | |--------|--| Notes: | | |--------|--| Elektrische Prüf- und Messtechnik GmbH Am Hasenbiel 42 D-76297 Stutensee/ Karlsruhe **+49 7244 20 500-0** +49 7244 20 500-39 info@hilo-test.de www.hilo-test.de # New compact Multi CE5 Combining burst, surge, power fail and magnetic field tests Visit page 5 for further details.